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Abstract
Creating realistic human movement is a time consuming and labour intensive task. The major dif�culty is that the
user has to edit individual joints while maintaining an overall realistic and collision free posture. Previous research
suggests the use of data-driven inverse kinematics, such that one can focus on the control of a few joints, while
the system automatically composes a natural posture. However, as a common problem of kinematics synthesis,
penetration of body parts is dif�cult to avoid in complex movements. In this paper, we propose a new data-driven
inverse kinematics framework that conserves the topology of the synthesizing postures. Our system monitors and
regulates the topology changes using the Gauss Linking Integral (GLI),such that penetration can be ef�ciently
prevented. As a result, complex motions with tight body movements, as wellas those involving interaction with
external objects, can be simulated with minimal manual intervention. Experimental results show that using our
system, the user can create high quality human motion in real-time by controlling a few joints using a mouse or a
multi-touch screen. The movement generated is both realistic and penetration free. Our system is best applied for
interactive motion design in computer animations and games.

Categories and Subject Descriptors(according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Animation I.3.8 [Computer Graphics]: Applications—

1. Introduction

Human movement design is one of the most labour inten-
sive tasks in computer graphic and animation applications.
While captured motion data is now widely available, it is
usually very dif�cult to adjust existing movement to satisfy
requirements based on design purposes and environmental
constraints. The animator has to coordinate all joints indi-
vidually to create a natural posture, even if he/she is only
interested in adjusting a few joints. Body penetrations have
to be avoided and resolved throughout the editing process.
Constraints on human physiology such as range of move-
ment, as well as the logical meaning of the posture, have to
be manually maintained. These processes are time consum-
ing even for highly skilled animators.

Techniques based on inverse kinematics (IK) are proposed
to ease the pain of motion editing, such that when the user
designs the target locations of speci�c body parts of a virtual
character, which are typically the end effectors, kinematics
parameters such as joint angles in the skeleton hierarchy can

y e-mail: edmond@comp.hkbu.edu.hk

be computed accordingly. However, it is dif�cult to guaran-
tee the high level naturalness of the postures created by IK.
That is, even if the posture obeys joint limits, it may still be
unnatural because of the intrinsic human behaviour such as
balancing and body parts correlation. To solve this problem,
data-driven IK algorithms such as [GMHP04,CH05] are pro-
posed. Using motion captured from a real human, a latent
space can be created with dimensionality reduction tech-
niques. Posture optimization is performed in such a space
considering the user inputs and prede�ned energy functions
to synthesize the required posture. Because of the use of real
human motion data, the created postures are natural.

The major problem of existing data-driven IK is the dif�-
culty to avoid body part penetration during the editing pro-
cess. This is because the latent space is created by analyz-
ing kinematic features such as joint position and orientation,
instead of the topology of the motion. As a result, kinemat-
ically similar but topologically different postures, such as a
posture with the right arm lying on the left one and another
vice versa (Figure2), are placed in the same latent space.
When optimizing for a target posture in such a space, the
posture can easily switch from one topology to another, re-
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sulting in body penetration. While one can design energy
terms or constraints to avoid penetration during optimiza-
tion, it is highly inef�cient as such evaluations introduce
non-linearity into the space. In the worst case, optimization
could get trapped in local minima and fail to produce the
optimal posture. To remedy this, it is essential to construct
a more representative latent space, instead of simply adding
optimization constraints.

In this paper, we propose a topology aware data-driven IK
algorithm that creates realistic human movement based on
user controls, while intelligently conserving the topology of
the movement and avoiding penetration. We adapt the lazy
learning framework and construct a low dimensional space
from a subset of sample postures in a motion database dur-
ing run-time. We then apply online frame-based optimiza-
tion to synthesize the postures required. Unlike previous ap-
proaches, our algorithm analyzes the topology of the pos-
tures using Gauss Linking Integral when constructing the la-
tent space. With the space consisting of postures with simi-
lar topology, optimization terms related to penetration avoid-
ance can perform consistently.

With our proposed framework, it becomes possible to ef-
�ciently design high dimensional human movements with
low dimensional input devices such as mice and multi-touch
screens. The animator can focus on adjusting the key parts
of the body, while the system automatically controls the rest
of the joints to produce logically correct and penetration free
postures. Experimental results show the creation of complex
movements such as a character climbing a ladder and sitting
on a chair, in which the joints have to be precisely managed
in order to maintain the movement topology and avoid pen-
etration. Our algorithm is best applied for interactive pos-
ture and movement creation in design and animation appli-
cations.

The rest of the paper is organized as follow. We �rst re-
view related research in Section2. We then give an overview
of the system and highlight our major contributions in Sec-
tion 3. The core of the system involves preparing a motion
database (Section4), constructing the latent space (Section
5) and optimizing for the target posture (Section6). Experi-
mental results and system analysis are presented in Section
7. Finally, we discuss and conclude the proposed method in
Section8.

2. Related Work

In this section, we discuss research that is closely related to
this paper. We will �rst give a general overview on tradi-
tion IK algorithms, focusing on the different methods of IK.
Readers are referred to [AL09] for a more comprehensive
review of IK. Second, we review research to create natural
movement using data-driven algorithms, and point out their
major weaknesses. Finally, we discuss how penetration-free
motion can be synthesized, and point how topology can en-
hance real-time motion synthesis.

2.1. Traditional Inverse Kinematics

Here, we review some of the important algorithms in tradi-
tional IK, and point out their respective weakness.

IK is used to calculate the joint parameters in the skele-
ton hierarchy based on a desired location of the end effec-
tor. There are several methods to estimate these parame-
ters. A popular one is to apply numerical solvers such as
the least square method [Whi69] and the singularity robust
inverse method [NH86], which usually require higher com-
putational cost and are not suitable for real-time applica-
tions. To achieve better performance, Lee et al. proposed an
analytical IK solver to calculate the body posture with the
given positions of the hands and the feet [LS99]. Shin et al.
proposed an intelligent inverse kinematics solver that priori-
ties multiple constraints for real-time application [SLSG01].
To deal with the temporal inconsistency across frame when
applying IK, Gleicher suggested the use of spacetime con-
straints to synthesize high quality movement [Gle97]. A gen-
eral problem of traditional IK algorithms is the dif�culty to
ensure the naturalness of the synthesized motion. This is
because natural human motion involves a lot of subtle be-
haviours such as balancing and correlation of body parts,
which are dif�cult to be modelled mathematically.

2.2. Data-Driven Inverse Kinematics

The idea of data-driven IK is to make use of captured mo-
tion data to help synthesize the required posture, such that
natural movement can be created using a low dimensional
control signal. Here, we review algorithms that analyze the
whole motion database as an of�ine process, followed by
those using online modelling.

To generate natural movements, one can create a natural
movement space based on captured motion. Any movement
synthesized in the space is then assumed to be natural. Gro-
chow et al. created the space using scaled Gaussian process
latent variable model [GMHP04]. The user used the mouse
to control a few joints, and the system searched for the ap-
propriate posture that satis�es the constraints in the latent
space. Wu et al. further proposed the concept of represen-
tative postures, which are a subset of distinctive postures in
the database, to deal with large motion database [WTR11].
Wei and Chai solved the same problem by constructing a
mixture of factor analysis [WC11]. The algorithm segments
the motion database into local regions and models each of
them individually. Nevertheless, the training cost and sys-
tem complexity increases with the amount of source data,
and the effectiveness of dimensional reduction reduces with
the increase of motion data variety.

As opposed to of�ine training approaches, online mod-
elling has shown to be effective for real-time application
with large motion dataset. The idea is to select a small sub-
set of posture based on run-time information to synthesize
the required posture. A naive method is to search for a best
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match posture during run-time based on the user input to
synthesize the character movement [SH12]. A better ap-
proach is proposed by Chai and Hodgins applies local Prin-
cipal Component Analysis to construct a latent space during
run-time [CH05]. A set of postures that are similar to the
current one is used to construct the space, such that natural
full body motion can be synthesized with a small number of
positional constraints. Liu et al. extended the idea by using
the maximum a posteriori framework to reconstruct the mo-
tion, which enhanced the consistency of the movement in the
temporal domain [LWC� 11]. The general problem of these
methods is that it is dif�cult to ensure the set of extracted
postures to be logically similar as kinematics metric is used.
Postures of different topology in the space may result in in-
valid synthesis with self-penetration. We also apply online
modelling in this paper. However, we propose a GLI met-
ric [HK09a] to extract logically similar postures for creating
the space, ensuring penetration-free movements.

2.3. Penetration-free Movement Synthesis

One of the major sources of visual artifacts in real-time mo-
tion editing system is body penetration. Here, we discuss
why traditional approaches fail to address the problem, as
well as how the topology-based motion synthesis is applied.

Collision detection and avoidance in the joint space is sub-
optimal. While applying path planning algorithms such as
Rapidly-exploring Random Trees (RRT) [LK00] in the joint
space is a possible solution [SKF07], the process is compu-
tationally inef�cient and tends to generate unnatural move-
ments. This is because the joint space provides very limited
guidance on how the collision could be effectively avoided,
making the RRT search a trial and error process. Ho et al.
proposed a spatial representation to model the relationship
between a character and its surrounding environment as a
mesh structure [HKT10,HS13,HCKL13]. However, because
the representation is inconsistent across frames, it can only
be used for adjusting an existing posture, but not synthesiz-
ing new postures that satisfy user de�ned constraints.

The Gauss Linking Integral (GLI) is a value describing
how much two curves wrap around each other [Poh68]. Ho
and Komura proposed to model a human character as a
set of polygon curves, and calculate the GLI values to in-
dex postures involving two characters in a motion database
[HK09b]. They further proposed the topology coordinates
based on GLI for motion synthesis by interpolating topolog-
ically similar postures [HK09a]. Such a coordinate system
has been shown effective in creating penetration-free move-
ment in close interaction between two characters such as
wrestling [HK11]. However, the framework cannot guaran-
tee motion naturalness. Also, it is only suitable for move-
ment that involves tangling of body parts/limbs, which
hugely limits the variety of motion that can be synthesized.
For motion that does not involve tangling, such as reach-
ing motions, the topological constraints become less effec-

tive to control the characters. This is because the GLI val-
ues of such postures are close to zero and does not re�ect
the posture well. This paper proposes a new framework that
combines the advantage of traditional GLI and data-driven
approaches, such that different classes of natural movement
can be produced.

3. System Overview

Figure 1: The overview of the proposed framework.

The overview of our motion creation framework, which is
a continuous posture synthesis algorithm, is shown at Figure
1. We �rst prepare a database that includes postures in both
GLI and joint angle representation. Given a current posture,
we search for a set of similar postures with a GLI-based
distance metric. This ensures the obtained neighbour pos-
tures to be penetration-free and logically similar to the cur-
rent one. We perform local Principal Component Analysis
to construct a latent space, and optimize for a resultant pos-
ture with the user inputs and GLI constraints. Because the
latent space is created with captured motion, the generated
posture will follow the natural human behaviour. Finally, the
optimized posture is back projected to the full dimensional
space and becomes the new current posture. The process is
repeated to create a continuous motion.

3.1. Contributions

We have two major contributions in this paper:

� We propose a new topology aware data-driven IK algo-
rithm that can ensure natural and penetration free synthe-
sis for complex movements such as tight body movements
and interaction with objects. Comparing to existing ap-
proaches, our real-time system has similar computational
cost but more consistent simulation quality.

� We propose a framework to combine the bene�ts of tra-
ditional kinematic-based and topology-based motion syn-
thesis. Our system can produce topology consistent move-
ments. In addition, it can create a much wider variety
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Posture type Number of postures
Original After �ltering

Basic Movement 4539 1400
Ladder 360 170
Chair 1034 331

Table 1: Number of postures in our motion database.

of postures comparing to existing topology-based ap-
proaches including non-tangle movements.

4. Database Creation

In this section, we explain how we construct the motion
database, which is used to enhance the naturalness of the
synthesized postures in later stages.

Each record of our motion database consists of three com-
ponents: (1) a normalized posture in the joint angle represen-
tation, (2) the corresponding GLI representation of the pos-
ture, and (3) an optional GLI representation of the interac-
tion between the character and an object. We encode (2) and
(3) in GLI such that our system can prevent self-penetration
and penetration with objects respectively during motion syn-
thesis.

4.1. Posture in Joint Angles

Here, we explain how we prepare the postures in joint an-
gle representation, and how we �lter the database for similar
postures.

We capture human motion from traditional motion cap-
ture system, and retarget the motion into standard body size
according to [Arm88] using commercial software. We then
create normalized postures by removing the translation and
rotation along the vertical axis of the root joint. This allows
us to represent the motion database as a collection of inde-
pendent postures. Each posture is encoded as a series of Eu-
ler angles that represents the orientation of each joint.

We �lter the motion database for similar postures. We
compare every pair of postures in the motion database, and
calculate the sum of square of joint position differences ob-
tained by Forward Kinematics. If the value is smaller than
a threshold, we remove one of them. This operation has two
major advantages. First, it hugely reduces the size of the mo-
tion database and enhances run-time ef�ciency. Second, by
removing similar postures, we ensure that when searching
for neighbour postures during run-time, we can have a set of
postures with reasonable variation. A summary of the num-
ber of postures in our motion database before and after the
�ltering process is shown in Table1.

Notice that we opt to �lter the database in the joint po-
sition space, instead of the GLI representation that will be
explained in the next section. This ensures posture samples

to be evenly distributed in the joint position domain, and thus
covers the possible target end-effector locations speci�ed by
the user.

4.2. Posture in GLI Representation

Here, we describe the process to calculate the corresponding
GLI representation for each posture in the motion database.

The major problem of the joint angle representation is the
incapability of representing the logical meaning of a mo-
tion. Figure2 shows an example. The two postures are very
similar in joint angle but different in topology. Synthesiz-
ing with a set of kinematically similar but topologically dif-
ferent postures may result in penetration. As a solution, we
adapt the topological relationship based on GLI [Poh68] that
represents on the logical meaning of the movement, such as
whether an arm is on top of or below another [HK09a]. GLI
describes how two curves twisted around each other. A large
absolute GLI value means that the two curves are tangled,
while a small one indicates them being nearly parallel. The
sign of the value changes when two curves penetrate each
other, making it a perfect choice to construct a space for
penetration avoidance. Figure3 shows the GLI values of two
pairs of curves with different con�gurations.

Figure 2: A pair of postures that are kinematically similar
but topologically different.

� � 0:5 � 0:5

Figure 3: Examples of curves and the corresponding GLI
values.

We adapt the algorithm from Ho and Komura [HK09b] to
construct GLI representation for each posture. Here, we out-
line the method and highlight the key steps. The readers are
referred to the mentioned paper for the details. In [HK09b],
the tree structure of a character is represented using 10 poly-
gon curves. However, we found that the representation us-
ing such an extensive number of polygon curves is more
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detailed then required, making the system very sensitive to
small changes of movement from the character. In this pa-
per, we represent the major body parts of a character using 5
polygon curves as shown in Figure4 left. They are thehead
and torso, right arm, left arm, right leg andleft leg respec-
tively. The GLI representation of a posture is de�ned as the
set of all possible combinations of polygon curve pairs. For
each pair of curvesg1 andg2, the GLI value is calculated as:

GLI(g1;g2) =
1
4p

Z

g1

Z

g2

dg1 � dg2 � (g1 � g2)

kg1 � g2k3 (1)

where� and� represent cross and dot product respectively.

Figure 4: The polygon curves assignment to compute GLI
for the character and objects.

Notice that as we use 5 polygon curves to represent the
structure of a character, the number of possible polygon
curve pairs is 10. Thus, a posture is represented as a GLI
vector with 10 degrees of freedom. We implement the ana-
lytical solution proposed by [KL00] for calculating the GLI
for ef�cient computation.

4.3. Object Interaction in GLI Representation

Here, we illustrate how the interaction between a charac-
ter and an object is represented by GLI and stored in the
database accordingly.

The object interaction is an optional component in our
motion database. It is only used for the motion involving
interaction with external objects. During motion capture, we
capture both movements from the character and the object.
Then, we manually design the polygon curve representation
of the object as we do for the character. The interaction is
encoded as the set of GLI values consisting of all pairs from
the polygon curves of the character to that of the object.

We model two objects in this work. Figure4 middle shows
how a chair is modelled with 10 polygon curves, and Fig-
ure4 right shows how a ladder is modelled with 8 polygon
curves. The number of dimension of the GLI vector that rep-
resents the interaction is calculated as the multiplication of
the character and the object GLI dimensions. For example,
for a character climbing a ladder as shown in Figure5, the

interaction is computed by pairing the 5 character polygon
curves and the 8 ladder polygon curves, resulting in a vector
of 5� 8 = 40 GLI dimensions.

Figure 5: The interaction between the character and the
ladder is encoded with GLI values.

Notice that assigning polygon curves to represent an ob-
ject is more about art than science. However, there are two
major principles to guide the process. First, the polygon
curves should illustrate the major outline of the object, such
that we can capture the way the character interacts with it.
Second, we should use the minimum number of polygon
curves to reduce run-time cost since using excessive curves
to represent character and objects will not improve the qual-
ity of the resultant postures.

5. Latent Space Creation

In this section, we explain the run-time process to construct
a latent space using local Principal Component Analysis
(lPCA). We �rst detail the process assuming there is no ob-
ject in the scene. Then, we explain how the system handles
the object.

5.1. Local Principal Component Analysis

Here, we describe the process to search for the K nearest
neighbours from the current posture, and apply PCA to re-
duce the dimension of the postures.

Given the current posture of a character, the �rst step of
lPCA is to search for the K nearest neighbour in the mo-
tion database. The important issue here is that we should
search for postures with similar topology. Otherwise, the la-
tent space created will blend postures of different topology,
resulting in potential penetrations. Therefore, unlike previ-
ous works such as [CH05] that search for postures solely
based on the closeness in kinematics, we search for pos-
tures based on their GLI representation to obtain topolog-
ically similar postures before comparing the kinematics as
in [HK09b]. We calculate the GLI representation of the cur-
rent posture using Equation1. The different between the cur-
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rent posturepc, and one of those in the database,pd, is cal-
culated as:

D(pc; pd) =
itotal

å
i= 1

(GLIci � GLIdi )2 (2)

whereGLIci andGLIdi are theith dimension of the GLI vec-
tors of pc and pd respectively,itotal is the total number of
dimension of the GLI vectors, which is 10 in our setup as ex-
plained in Section4.2. Using Equation2, we obtain a set of
topologically similar postures. We further select the K near-
est neighbours, which is set to 50 in our system, by compar-
ing the similarity of joint angles between the current posture
and those from the subset. We apply brute force search to ex-
tract the K postures because of the small size of the database.
If a much larger database is required, KD-tree [KTWZ10]
can be used to index the GLI vectors for ef�cient query.

We then construct the latent space with the extracted pos-
tures. Notice that we utilize the joint angle representation of
the extracted posture to construct the space here. This is be-
cause GLI representation is limited to how two curves wrap-
ping around each other, as shown in [HK09b]. If we use the
GLI representation to construct the latent space, it will be
dif�cult to synthesize movement that increases or decreases
the distance of two curves, as well as movement that is par-
allel to the curve directions. The dimensionality of the joint
angle vectors is reduced using PCA [Bis96] to create the
latent space, which is set to 30 dimensions in our system.
Since the latent space is created using human postures, it
represents the natural style of human movement. Moreover,
because the source postures are of similar GLI values, pos-
tures synthesized in the space follow the same topology.

5.2. Object Handling

Here, we explain how the system takes the object into con-
sideration, if there is any, during the latent space construc-
tion process.

If interaction with an object is required, the process of
Section5.1 is updated to include the object. We apply the
distance function in Equation2 to computeD(Ic; Id) and
D(pc; pd), whereIc andId are the GLI vector for the inter-
action between the character and the object for the current
posture and the database posture respectively. The �nal dis-
tance is calculated as:

D(Ic; Id) + D(pc; pd) (3)

With the combined distance function, we extract postures
that interact with the object in a similar way. This helps to
prevent penetration with objects during the motion synthe-
sis.

When creating the latent space, we only need to consider
the joint angle representation of the posture, even if there is
an object in the scene. This is because we assume the ob-
ject does not move by itself, and hence cannot be directly
controlled.

6. Posture Synthesis

In this section, we discuss how a posture is synthesized in the
latent space using posture optimization. We �rst detail the
individual energy term to evaluate the quality of a posture.
Then, we de�ne the constraints that represent the user input.
Finally, we explain the overall optimization process.

6.1. Energy Terms

Here, we explain the three energy terms designed in our sys-
tem, namely the topology term, the continuity term and the
style term.

The topology termminimizes the change of the posture
topology to prevent penetration. It is de�ned as the change
in GLI given a posture in the latent space:

JGLI =

0

B
B
B
@

¶Gy;1

¶ly;1
: : : ¶Gy;1

¶ly;n
...

. . .
...

¶Gy;a

¶ly;1
: : : ¶Gy;a

¶ly;n

1

C
C
C
A

(4)

Et =
�
�
�
�JGLI � �ly

�
�
�
� (5)

wherely is a vector de�ning a point at the latent space,�ly
is its derivatives,JGLI is the Jacobian of the GLI derivatives
with respect to�ly computed by �nite differencing,a andn
are the dimensionality of the GLI and latent representations
respectively,Gy;i represents theith pairwise GLI value and
1 � i � a, JGLI � �ly returns a vector consisting of the GLI
values in the full dimensional space.

Notice that while the latent space is created using posture
samples with similar topology, the space itself is in�nitely
large. Postures synthesized at region far away from the pos-
ture samples may still be invalid. That is why we imple-
ment the topology term to guide the optimization process.
Also, it is advisable to implementEt as an energy term, in-
stead of a constraint term. This is because the positional con-
straints to be explained in Section6.2may con�ict with the
topology constraints. By implementEt as an energy term,
we allow small topology changes such that the character
can achieve the required target postures, while penalizing
heavily on penetration when the sign of the GLI values is
changed, as explained in Section4.2.

Thecontinuity termensures smooth movement to be syn-
thesized. It is de�ned as the positional difference between
the synthesized posture and the current posture:

Jpos =

0

B
B
B
@

¶py;1

¶ly;1
: : : ¶py;1

¶ly;n
...

. . .
...

¶py;m

¶ly;1
: : : ¶py;m

¶ly;n

1

C
C
C
A

(6)

�py = Jpos�ly (7)

Em = jj �pyjj (8)

whereJpos is the Jacobian of the joint position derivatives
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with respect to�ly computed by �nite differencing,m andn
are the number of joints and latent variables respectively, �py
represents the difference between the input posture and the
edited posture with respect to�ly.

The style termencourages the optimization to be per-
formed at the center of the latent space, where there are more
sample postures, such that the style of the sample postures
can be best maintained. It is de�ned as:

Es =
�
�
�
� �ly

�
�
�
� (9)

6.2. Constraints

Here, we de�ne the constraints designed in our system,
which are used to achieve the requirements given by the user.

We setup positional constraints to control the posture of
the characters. It is de�ned as:

Jjpos; j =
�

¶p j ;y

¶ly;1
: : : ¶p j ;y

¶ly;n

�
(10)

targetj � p j ;y = Jjpos; j � �ly (11)

whereJjpos; j is the Jacobian of the position derivatives of
joint j with respect to�ly computed by �nite differencing to
obtain the locally linear relationship betweenJjpos; j and �ly,
n is the dimensionality of the latent representation,p j ;y is
the position of jointj for a posturey, targetj is the target 3D
position of the jointj de�ned by the user.

Notice that the user can control multiple joints at the same
time. In such a case, multiple constraints are de�ned. The
optimization engine will then try to optimize for a posture
that �t into all constraints.

While it is possible for the user to over-constrain the sys-
tem, it rarely happens during run-time since a few control
points can usually achieve the desired posture. In fact, the
beauty of our system is that the user can create natural move-
ment without controlling a large number of joints.

6.3. Optimization

Here, we explain how we synthesize the �nal posture using
optimization.

We optimize the new posture by minimizing the energy
terms while satisfying the positional constraints. For the ease
of explanation, all of the hard constraints explained in Sec-
tion 6.2 are represented byh = H ly and the optimization
problem is de�ned as:

minimize
�ly

wtEt + wmEm+ wsEs

subject to h = H �ly
(12)

wherewt , wm andws are the weights for the respective terms,
and are set as 1.0, 0.2 and 1.0 respectively. The optimization
is then solved by solving the following linear equation:

�
M| M H |

H 0

� � �ly
l

�
=

�
0
h

�
(13)

Experiment Database Our [CH05]
Size Time Time

Basic Movement 1400 20ms 18ms
Ladder 170 17ms 16ms
Chair (Setup 1) 331 29ms 27ms
Chair (Setup 2) 331 32ms 31ms

Table 2: Details on the experiment conducted.

in which
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whereA is a diagonal matrix for representing�ly in Equation
9. The linear equation can be solved ef�ciently.

To enhance the optimization ef�ciency, the optimized pos-
ture will be considered as the initial posture of the next iter-
ation. Since the algorithm is proposed for real-time applica-
tions, there are two conditions in which the optimization ter-
minates: (1) an optimal posture is found, and (2) the number
of optimization iteration exceeds a prede�ned value, which
is set to 3 in the experiment. This allows us to trade-off syn-
thesis quality and computation time.

7. Experimental Results

In this section, the experimental results are presented. The
experiments run on a computer with an Intel Core i7-2600
Processor 3.40 GHz and 8GB of RAM. The system is im-
plemented on Windows with Visual C++. We use UMF-
PACK [Dav04] as the linear solver to solve Equation13.

For all the experiment, the value of K in the K nearest
neighbour search is set to 50, the dimension of the latent
space is set to 30,wt , wm andws are set as 1.0, 0.2 and 1.0
respectively.

To evaluate the effectiveness of the proposed method, we
quantitatively compare the results in terms of motion qual-
ity and computational cost with traditional data-driven IK,
which is a traditional data-driven IK approach. In the exper-
iments, the purple character is synthesized by our method,
and the green circles indicate the user control gesture. We
duplicated the gesture to control the yellow character, which
is synthesized by the method proposed in [CH05]. Body
parts colored in red indicate detected collisions. The read-
ers are referred to the attachment video for the resultant mo-
tions.

7.1. Basic Character Movements

In this experiment, we edit the posture of a single character
by controlling 3 joints of the character, as shown in Figure
6. The user constrains the feet location to avoid foot slid-
ing while dragging a body part of the character to edit the
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Figure 6: Editing the posture of a single character using our method (purple) and traditional data-driven IK (yellow). Colliding
joints are highlighted in red.

Figure 7: Editing the posture of a character interacts with a ladder.

posture interactively. Our method creates collision-free pos-
tures throughout the experiment. However, postures synthe-
sized by [CH05] contain penetrations between the body seg-
ments, especially when the body parts move tightly around
each other. Table2 detailed the size of the �ltered database
in frames, as well as the frame time for both our method
and [CH05]. The results show that the computation cost does
not increase signi�cantly with the GLI computation, but the
motion quality is enhanced signi�cantly.

7.2. Climbing a Ladder

In this experiment, the posture of a character that interacts
with a ladder is edited. The user drags one of the �ve end-
effectors to edit the posture while constraining the rest. The
results are shown in Figure7. Notice that there are signif-
icant collision between the lower body and the ladder with
traditional data-driven IK.

7.3. Sitting on a Chair

In this experiment, the posture of a character who sits on a
chair is edited. In the �rst setup, the user drags one of the
body parts of the character and the rest of the body is uncon-
strained. The results are shown in Figure8. We can see that
the legs collide frequently with the chair. In the second setup,
the user constrains the feet while dragging the upper body to
see if this could improve the quality of the postures synthe-
sized by traditional method. However, collision remains seri-
ous. This is likely because the latent space contains postures
of different topologies. Thus, collision avoidance is inef�-
cient and the optimization would easily get trapped in local
optimal solution, resulting in unnatural and colliding pos-
tures.

8. Conclusion and Discussion

In this paper, we propose a new topology aware data-driven
IK algorithm that can synthesize natural and penetration-free
movements. Our system combines the bene�ts of traditional
kinematics-based and topology-based motion editing. It can
synthesize different variety of postures, as well as preserv-
ing the topology of the postures. We conducted experiments
with complex movements that involve body parts moving
tightly with each other, as well as movements that involve
interaction with external objects. We show that our method
outperforms traditional data-driven IK algorithm with mini-
mal increase of computational cost.

While the framework is presented as an interactive IK sys-
tem, it can be applied to real-time motion synthesis applica-
tions. In particular, the experimental results show that our
method can create collision free movements in real-time.
This is particular suitable for applications such as console
games and VR systems to control virtual characters.

We did not take the volume and the shape of the body
parts into account in the topological representation. Under
extreme situations where the character has a notably differ-
ent size from that of the captured motion, collision could
occur. However, our system can still ensure penetration-free
movement as it conserves the topology of the movement. In
that case, collision can be resolved easily using motion re-
targetting algorithms.

If the character to be edited has a different skeletal struc-
ture from those in the motion database, such as different seg-
ment lengths and topologies, the positional constraints speci-
�ed by the user may not be satis�ed. This is because the �nal
posture is synthesized by interpolating the database poses in
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Figure 8: Editing the posture of a character sitting on a chair with two set of control gestures.

the latent space. With a different segment length, the con-
trolled body parts may not be able to reach the target posi-
tions. The same problem would arise if the object to be in-
teracted has a different structure from those in the database.
We argue that the aforementioned issue is a motion retarget-
ing problem. One possible solution is to synthesize the target
posture with the database skeletal and object structures, and
retarget the synthesized posture to the required structure us-
ing existing methods [Gle98,HKT10].

We iteratively tune the system parameters, such as the size
of K in nearest neighbour search, the dimensionality of the
latent space, and the number of maximum iterations in the
optimization, by considering the trade-off between perfor-
mance and synthesis quality. Speci�cally, we select a set of
postures from the database randomly, and consider the posi-
tions of their end-effector as constraints. We exclude those
postures from the database, and apply our algorithm to syn-
thesize them. We tune the parameters one by one to mini-
mize the difference between the synthesized postures and the
original ones in terms of Euclidean distance of the joint po-
sitions, while maintaining real-time performance. This pro-
cess is repeated until the result cannot be improved further.

Similar to every data-driven algorithm, our system may
fail if the user tries to create a posture that is signi�cantly
different from every posture in the database. Figure9 shows
a failure case in which the user tries to drag the left hand.
Similar posture cannot be found in the database, and hence
the synthesized posture is not natural.

Since there could be multiple Euler angles representations
for the same posture, interpolating postures in the Euler an-
gles space could be problematic. However, we did not suffer
from major issues with such a representation due to our sys-
tem design. When constructing the latent space, we select
the K topologically similar nearest neighbours from the mo-
tion database with similar Euler angles. Thus, during pos-

ture synthesis, the optimized posture based on intrinsic in-
terpolation is always consistent. The potential drawback is
that similar postures with different Euler representations will
not be retrieved during the KNN search. This would reduce
the number of usable postures and degrade synthesis qual-
ity. One possible solution is to implement Quaternion-based
posture representations and system designs.

Figure 9: A failure case when the posture to create is not
similar to any posture in the database.

As a future direction, we would like to simulate the move-
ment where multiple characters interact with each other. The
opponent characters can be considered as dynamic objects,
and we can analyze the topology change during individual
movement. The key problem to be solved is to model the
dynamic opponents effectively, such that we can maintain a
reasonable computational cost with the increase of charac-
ters.
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