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Abstract

Recurrent neural network (RNN) has become popular for human motion prediction thanks to its ability to capture temporal

dependencies. However, it has limited capacity in modeling the complex spatial relationship in the human skeletal structure. In

this work, we present a novel diffusion convolutional recurrent predictor for spatial and temporal movement forecasting, with

multi-step random walks traversing bidirectionally along an adaptive graph to model interdependency among body joints. In the

temporal domain, existing methods rely on a single forward predictor with the produced motion deflecting to the drift route, which

leads to error accumulations over time. We propose to supplement the forward predictor with a forward discriminator to alleviate

such motion drift in the long term under adversarial training. The solution is further enhanced by a backward predictor and a

backward discriminator to effectively reduce the error, such that the system can also look into the past to improve the prediction

at early frames. The two-way spatial diffusion convolutions and two-way temporal predictors together form a quadruple network.

Furthermore, we train our framework by modeling the velocity from observed motion dynamics instead of static poses to predict

future movements that effectively reduces the discontinuity problem at early prediction. Our method outperforms the state of the

arts on both 3D and 2D datasets, including the Human3.6M, CMU Motion Capture and Penn Action datasets. The results also

show that our method correctly predicts both high-dynamic and low-dynamic moving trends with less motion drift.

Index Terms

human motion prediction, body joint dynamics, diffusion convolutions, recurrent neural network, bi-directional predictor

I. INTRODUCTION

HUMAN motion prediction has attracted much attention in real-world applications where a precise estimation of

movements in future frames are needed for a fast system reaction. Examples include predicting pedestrian behaviours

in autonomous driving [1] and controlling virtual characters in computer graphics [2]. In contrast to action recognition [3]–[5]

with fully observed human movements, anticipating motion aims at predicting the future moving trend from partially observed
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motion seed, and the challenges mainly come from the highly temporal uncertainties on complex topological structures formed

by body joints. The goal of correctly predicting motion trend becomes not only spatially estimating plausible poses frame by

frame, but also maintaining dynamics between frames.

To deal with the above challenges, classical data-driven solutions adopt probabilistic models to interpret human motion

using Hidden Markov Model [6] or Gaussian process priors [7]. Such models depend on strong assumptions in statistical

distributions, which limits the scope of prediction. The emergence of recurrent neural network (RNN) allows the prediction of

motions with complex dynamics [8]–[11], as these networks use both motion history and the current pose to learn the temporal

dependencies. Despite the improved accuracy, it is still challenging for the RNN-based model to precisely preserve the motion

dynamics during prediction.

In this paper, we investigate three problems in existing motion prediction approaches with an RNN-based structure: 1)

Mining the spatial interdependency among body joints; 2) Reducing temporal discontinuity at early prediction; 3) Preserving

motion trend in long-term prediction.

In terms of mining spatial interdependency, we form a bi-directional diffusion graph on joints with adaptive connectivity to

capture the dependencies within multiple spatial steps. Vanilla RNN generates unrealistic movements without spatial modeling

[8], it is usually accompanied by a limb-level aggregation [11]–[13] while ignoring the abundant communications among joints,

which ends up with an inaccurate pose estimation. Here, we focus on a more generalized solution to explore the topology of

the graph formed by joints without body part constraints. By regarding each human joint as a graph node, we make our graph

connectivity to be adaptive with network training to model �exible joint combinations without skeletal restrictions. We then

perform graph convolutions [14] along multi-step random walks on the adaptive graph topology with a forward and backward

diffusion process. Unlike the majority of existing methods that only model graph convolutions with one-way propagation, we

integrate both forward and backward node information along the random walks, as the movement of different joints may also

affect each other.

Regarding the temporal discontinuity at early prediction, we solve it by modeling motion velocity to encode continuous

dynamics from the motion seed instead of raw poses. When synthesizing future movements, the discontinuity problem describes

the irregular jump between the given motion and prediction. Residual connections [8], [15], [16] attempted to eliminate this

by modeling the static poses to predict the dynamic velocities, where the discontinuity still exists as the motion dynamics is

indeed not observed by the model. This motivates us to train the velocity in a consistent way, i.e., predicting the next velocity

from the previous velocity rather than the previous pose, to maintain the moving regularities inherited from its seed motion

dynamics. As a result, it shows a better continuity than residual connections. We further propose a velocity-pose reconstruction

loss that optimizes the poses reproduced from the predicted velocity to ensure not to create unexpected movements.

To preserve the motion trend in long-term prediction, we propose a bi-directional predictor enhanced by a bi-discriminator

to adversarially revise the generated forward and backward motion dynamics. From a single forward predictor [8], [10], [17],

prediction errors are rapidly accumulated along the temporal domain since RNN models fail to keep the long-term knowledge

in recurrent steps, causing the generated motion drifting to a wrong direction. To this end, we train a backward predictor to

encode the velocity in reversed timesteps, such that the model recovers the context from the beginning dynamics that are lost
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Fig. 1. Illustration of a high-dynamic motion (top) and a low-dynamic motion (bottom) in Human3.6M.

during long sequence transition. Furthermore, the forward and backward predictors together with a bi-directional discriminator

will guide the generated velocity sequence to detect and revise its error from both past and future dynamics through adversarial

training. To reduce the model complexity, we also leverage the similarity between the predictor and discriminator in the same

direction using a weight sharing structure.

In particular, our predictor is formed by embedding the multi-step diffusion convolutions in the gated recurrent unit (GRU)

[18] to synchronously learn the spatial-temporal relationship of motion dynamics under a recurrent sequence-to-sequence

(seq2seq) [19] pipeline. With dual directions in both space and time illustrated above, we achieve a quadruple diffusion

convolutional recurrent network (Q-DCRN) for a precise motion dynamic prediction.

Comparing with the state of the art, we test on Mean Angle Error (MAE) as previous motion prediction works [8], [15], [16].

We also verify the predicted sequence with position-based metrics, i.e., Mean Per Joint Position Error (MPJPE) and Percentage

of Correct Keyjoints (PCK) [20], to better tell whether a prediction follows the ground truth in pose level. Experimental

results show that in terms of different metrics, our Q-DCRN outperforms the state of the arts on both 2D and 3D human pose

datasets. The qualitative study also shows that the proposed method correctly preserves both high- and low-dynamic motions

in long-term prediction, where previous work could not handle both cases. Here, a high-dynamic motion refers to an active

motion state with more movements and a low-dynamic motion is the opposite (see Fig. 1). We also verify our improvements

with ablation studies.

To summarize, the main contributions of this paper are:

� We propose a bi-directional diffusion graph under adaptive joint connectivity to mine the spatial interdependency for

human motion prediction;

� We propose to model velocity from the seed motion dynamics to reduce temporal discontinuity at early prediction

meanwhile optimizing the restored poses to avoid unexpected generations;
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� We propose a bi-directional temporal predictor to reduce error accumulation from both past and future motion dynamics

in an adversarial manner.

The rest of the paper is arranged as follows. Section II reviews the background research related to our work. Section III

explains the proposed Q-DCRN prediction framework. Section IV analyses the experiment results and discusses our system.

Lastly, Section V concludes this paper.

II. RELATED WORK

We �rst review how existing research learns the spatial structure in sequential-based networks (i.e., Spatial Perception). We

then summarize the background efforts in reducing the initial discontinuity (i.e., Temporal Discontinuity at Early Prediction),

and the long-term errors (i.e., Long-term Motion Drift). After that, we present different types of parameterizing during training

and their evaluation metrics (i.e., Parameterizations).

A. Spatial Perception

Sequential learning is the common approach to modeling temporal dynamics of human motion, since body joints are highly

correlated with each other, it is equally important to consider the inherent spatial structure for generating a natural pose in the

meanwhile. Butepageet al. [12] originally proposed a hierarchical encoder based on the kinematic tree using fully-connected

layers, which outperforms its experimental counterpart without the structural prior. Similarly, Wanget al. [11] learned the

high-level spatial representations by encoding hierarchical features extracted from different body components, and predict

batch of frames at once to prevent the mean pose problem. In contrast to [11] and [12], Aksanet al. [21] considered skeleton

hierarchy at the output stage for reconstructing controllable poses, and their idea can also be attached to existing works as

extra structure-aware layers to further promote motion prediction performance. While in these works, the subdivision of joints

into groups is a strong assumption under the articulated chain, and it overlooks the characteristic joint-level correlations.

Graph convolutional network (GCN) [22] is an alternative solution to integrally consider all joints as graph nodes. By merging

the features of a joint with its nearby neighbours, GCN shows potential in modeling human pose under graph structures. When

combining with the recurrent framework, GCN shows great advantages in analysing graph-based sequential data. For example,

Seoet al. [23] modeled natural language represented by the nearest neighbour graph and learned temporal regularities using

the RNN pipeline. In parsing motion patterns, Siet al. [24] exploited spatial-temporal graph convolution on dynamic skeleton

sequence to boost the performance of action recognition. In this paper, we adapt the method originally for traf�c network

modeling [25] to our motion prediction task with multiple spatial and temporal steps to anticipate future movements. Since

motion dynamics have more complex topology structures and more stochastic temporal variations, as discussed in [26] and

[27], using �xed graph connection limits the spatial proximity to the prede�ned con�guration (i.e., kinematic chain in skeletal

structure). Therefore, we design our graph connectivity to be adaptive, so it is capable of learning the underlying dependencies

among joints, and temporally we use a bi-discriminator to rectify the motion following a realistic moving pattern.

Recent researches also adopt GCN for motion predictions over innovative graph structures. Liet al. [28] constructed a mul-

tiscale graph structure based on different body components for motion prediction. While this method provides a comprehensive
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coarse-to-�ne modeling, extra knowledge is required to group the body into skeleton subsets, which makes it deterministic and

hard to be transferred to other skeletal structures. Moreover, the cross fusion of the multi-level structures in [28] also increases

the computational complexity, resulting in a slower prediction process. Similar to our graph structure, Cuiet al. [29] de�ned

adaptive joint connectivities and achieved impressive prediction results under a deep GCN framework. However, their joint

information can only be updated from its neighbour joints one step away. In this work, we conduct diffusion convolutions on

joints by integrating information several steps away to capture global dependencies, which also provides more insights on the

understanding of graph structure.

B. Temporal Discontinuity at Early Prediction

The temporal discontinuity in the beginning is harmful as it delivers wrong initial information to its following prediction,

which may derive an unexpected motion sequence with a large error rate. In heuristic research for motion prediction, a

representative residual network [8] was �rst proposed to estimate velocity, which has achieved great success in reducing initial

discontinuity of the generated sequence compared with previous attempts [30], [31] predicting only static poses. This triggers

many sequential-based motion prediction frameworks [13], [16], [32] introducing residual connection into their baselines. One

step of residual connection means that the system outputs velocity from the pose, and adds the velocity back to the previous

pose to predict the next step. However, the initial error remains notable during prediction as these methods only encode pose

features while unseen to the dynamics from the motion seed. This causes inconsistency in preserving the moving trend for

prediction, which violates the overall coherence of motion dynamics. In our case, we model the velocity from the given motion

and observe a better continuity property.

C. Long-term Motion Drift

The phenomenon of error accumulation during testing is originally observed in [30] who proposed an Encoder-Recurrent-

Decoder (ERD) network and a multi-layer Long Short-Term Memory network (LSTM-3LR) to decode motion frame by frame.

To detect the error, they suggested curriculum learning [33] to increasingly perturb input to mimic the distribution of the noisy

prediction. The idea of noise scheduling is later absorbed in [31] who introduced Structure-RNN (SRNN) of mixture units

interactions concerning an arti�cial spatial-temporal graph. Unlike ERD and SRNN, Martinezet al. [8] proposed a sampling-

based loss to synthesize the next frame completely from its previous predicted pose. The method performs less satisfactorily

in the long run for its invisibility of real motions. Later, a convolutional seq2seq network [15] is de�ned to identify spatial-

temporal motion correlations. However, their learned temporal dependency is restricted by a deterministic �lter size, causing

an intensive long-term dynamic loss in prediction. Recently, Dong and Xu [32] attempted to reduce long-term error by looking

back at previous frames with spatial attention. Chen et al. [34] avoided motion drift by generating early prediction controlled

by the action label, while our model is label-agnostic and is also feasible for long-term prediction.

With the assistance of generative adversarial network (GAN), the generative model is able to produce realistic motions with

less motion drift. Guiet al. [35] �rst incorporated a �delity and a continuity discriminator with a residual generator to �x the

prediction process. Later in [16], RNN was equipped with an extrinsic factor to �nd the intended probabilistic space of poses
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with the assist of a bi-directional discriminator. Note that their adversarial training aims to predict probabilistic priors, while

we explore the native ability of a bi-discriminator to correct the predicted motion from two temporal directions in an effective

weight-sharing strategy.

In [28], [29], temporal convolution network (TCN) is adopted to process motion history. By aggregating high-level temporal

information, TCN shows an advantage over RNN in short-term prediction by generating smoothed poses. However, this

advantage becomes weak in the long term especially for high dynamic motions, with the side effect of losing dynamic details.

In this paper, we enhance RNN with a velocity-based discriminator to correct the generated moving trend, which eventually

performs better in preserving long-term high dynamics compared with TCN-based methods [28], [29].

D. Parameterizations

The method of parameterizing human motion inevitably affects the outcome of �nal prediction, such as exploiting joint

positions is more interpretable than joint angles but may generate invalid articulations. In most cases, input motion is

parameterized as exponential maps, which obtains satisfactory results. Pavlloet al. [36] employed quaternion representation

accompanying with the property of orientation interpolation across frames, and this brings a smooth path in the estimation.

Holdenet al. [2], [37] learned latent feature representations by operating 3D joint positions, which bene�ts multiple application

�elds like motion generation, recovery, and comparison. While training on 3D position suffers from skeleton constraints such

as bone stretching, in [17] and [21], they modeled joint angles and tested on both angle and position spaces of their generations

for a more comprehensive evaluation under different parameterizations. Following their work, for Human3.6M [38] and CMU

MoCap datasets [39] we train on joint angles as they are invariant of bone length constraints and thus stabilizing the model

�tting. In the test phase, we compare the joint angle as a standard metric used in previous models, and also joint position

to convince of the prediction quality. The experiment on the Penn Action dataset [40] is carried out on key joint positions

because of its data representation format in 2D space.

III. T HE QUADRUPLE DIFFUSION CONVOLUTIONAL RECURRENTNETWORK

Our goal is to holistically learn the spatial-temporal joint correlations to preserve the motion trend. To achieve this, we

propose an innovative approach to modeling joint dynamics in the velocity �eld under a graph-based sequential network

architecture, with dual directions in both space and time.

We �rst explain the problem de�nition and introduce the notation that will be used throughout our framework. In general, a

human motion sequence consists of consecutive poses, and each of them is represented by multiple joints. We assume that the

interaction within two joints is directed and heterogeneous, i.e., the in�uence from jointp to joint q is different fromq to p,

which better models the effect of the body hierarchical structure [41]. Taking “arm swing” as an example, shoulder dynamics

largely determine hand movements, while the in�uence will be smaller from hand to shoulder. However, this diversity cannot

be modeled by an undirected graph where two opposite directions are weighted equally. Under this observation, a human pose

can be constructed under a directed graphG = ( V; E), whereV is the vertex set withK nodes, i.e.,jV j = K , andE is the

edge set.A 2 RK � K is the graph adjacency matrix denoting the spatial proximity between nodes. Here,A is not symmetric
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Fig. 2. An example of the dual directional 3-step diffusion graph concentrated on the “left shoulder” joint. The arrow between graph nodes represent the
diffusion direction. The nodes in orange are the activated graph nodes that taking part in the feature fusion at the current step.

Fig. 3. The proposed Q-DCRN framework (unrolled version) with the outline of dual directional processes in both space and time. The blue and green boxes
denote the GRU cells with diffusion graphs in forward and backward chronological directions, respectively. The skeleton in red and blue represents the ground
truth posture, and the one in green and purple represents prediction. We attach two skeletons to represent the velocity of two adjacent frames. Inside the
dotted line is the discriminator structure for adversarial training.x̂ i and ~x i are used to indicate forward and backward predicted poses. Parameters of boxes
in the same color are shared during training.

in order to represent the inequality in the two-way connectivity. Given a pre�x of human posesX 1:t = [ x1; x2; : : : ; x t ], where

x i 2 RK is de�ned on graphG at time i , the purpose of motion prediction is to estimate the motion post�xX ( t +1): T . Since

we operate on the velocity domain, our task is characterized as estimating[r x t +1 ; : : : ; r xT ] from [r x2; : : : ; r x t ] underG,

where the backward differencer x i = x i � x i � 1 denotes the motion velocity at timei .
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A. Bi-directional Spatial Formation

We construct bi-directional diffusion convolutions on an adaptive graph structure to discover the spatial interdependency

among joints. Diffusion convolutions [42], [43] aggregate messages passing within high-order neighbours by formulating the

node communication as a diffusion process with multiple steps, comparing to standard GCN that only considers local node

correlations. Since the joint dynamics can be in�uenced by the joints from several spatial steps away and vice versa, such

as the movements of the joints in legs and arms always affecting each other to maintain the body balance, we regard the

spatial dynamics �ow as a divergent and convergent diffusion process separately to simulate upstream and downstream node

communications. This is because under a conventional directed graph, the diffusion will only apply along a single direction

from the root node to the child node within several steps [44], i.e., a divergence random path. Here, the extra convergent

path is to complement the divergence in order to model the two-way information delivery, such that the child node can also

in�uence its root node.

The diffusion processes are conducted on a novel graph structure with adaptive joint connectivity. In existing graph-centered

networks [43], [45], [46], the topology structure of graph re�ected by the node connectivityA is unweighted and arti�cially

de�ned. In diffusion convolution, [43] provided a general case under an unweighted and undirected graph for node classi�cation

tasks, where the node connections are with equal importance. Their model is expected to learn the dominant graph structure that

can discriminate against a certain type of cluster, regardless of the connectivity strengths between nodes. However, in motion

prediction, the unweighted structure cannot quantify the joint dependency, which may lead to ambiguous joint movements.

Furthermore, the prede�ned topology in human modeling indicates only the joints connected by bones are communicative,

which ignores the abundant collaborative information among latent connections [3]. For example, the connection between two

feet is important as it symbolizes the gait pattern during locomotion, but it will not be highlighted under the traditional setup.

Therefore, instead of manually de�ningA that restricting the graph descriptiveness within the kinematic tree structure, we set

A as learnable during network training to reveal the inherent connection strengths among joints acquired by the real motion

data. Here,A is randomly initialized following a standard uniform distribution within the range[0; 1].

With the adaptive graph structure, we then de�ne a two-way diffusion convolution with polynomial recurrences to mine the

interdependency of joints within multiple spatial steps. More speci�cally, in a diffusion process [47] with divergent random

paths, a weighted combination
P N

n =0 � n (D � 1A)n is used to estimate the graph stationary distribution� 2 RK � K with a

truncation at stepN , and� n is thenth factorization. This polynomial quanti�es the effect of root nodes on their child nodes

within N spatial steps spreading from the upstream.D � 1A is the normalized adjacency matrix, whereD is a degree matrix

with its diagonal elements representing the row summation of the absoluteA. The transposeAT describes the spatial af�nity

for downstream diffusion process, which can be used to capture the impact of child nodes on their ascendant nodes. The

diffusion convolution operation with dual random walks (denoted as� G ) is de�ned by:

H t � G � =
NX

n =0

((D � 1
u A)n H t � u;n + ( D � 1

d AT )n H t � d;n ); (1)

whereH t 2 RK � F is the input features of the current stept with F denoting the latent feature dimension,� is the weights



IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY 9

of the convolution �lter to be trained and� :;n 2 RF � P with P representing the dimension of output features.Du and Dd

are upstream and downstream diagonal matrices normalizing divergence and convergence onG, respectively. Whenn = 0 ,

the two terms in Eq. (1) are merged and no diffusion is conducted. The dual directional diffusion procedure of our spatial

structure is illustrated in Fig. 2.

To facilitate the re�nement of the diffusion procedure, here we use anN -step diffusion along the two-way random walks

on the spatial graph of human dynamics. Diffusion with multiple delivery steps gets access to the combination of different

levels of impact. A lower-ordern will only grasp the interactions between a few nodes, which is effective in describing the

movements with a small body scope such as “waving hand”. A higher-ordern could show spatial dependencies among a set

of nodes, which is valuable in characterizing global physical coordination like “walking” and “jumping”. The choice of total

diffusion stepN is empirical (see Fig. 11), as more steps will re�ne the diffusion process with the random walks traversing

more often along the joints in a close relationship, on the other hand, it yields a more complicated model.

B. Bi-directional Temporal Modeling

As observed from the bi-directional computation for time series [48], modeling temporal sequences in the forward and

backward directions equips the system with rich contextual information from both past and future conditions. This is extremely

useful for human motion prediction who will also borrow the information from the future dynamics to revise promptly in order

to keep the long-term motion trend.

Under a seq2seq recurrent architecture, we propose a bi-directional predictor to encode the forward and backward motion

dynamics. In the traditional single-predictor setup that only considers the forward direction [8], long-term movements are not

guaranteed because a current pose only has access to the dynamics in the past and drift itself into a wrong moving direction.

To alleviate this motion drift, we propose a novel two-way predictor to make the system aware of its own generated dynamics

from the past and the future.

Furthermore, we also propose an adversarial bi-discriminator to reinforce the predictor such that it can adjust its own forward

and backward generation synchronously according to the real motion dynamics. From previous work, when a single directional

discriminator is used [35], the long-term errors are easily accumulated due to the dif�culty in correcting small mistakes at

early prediction. This is because the recurrent temporal modeling tends to focus more on the latest inputs. The function of the

backward discriminator is to help the predictor correct the beginning predicted frames to reduce error accumulation.

We also design a model compression method that could ef�ciently communicate between the bi-predictor and the bi-

discriminator since they both need to encode the motion dynamics, i.e., we share the structures and weights between them

within the same directions. This helps the common component to quickly converge to the optimal motion manifold and prevents

the complicated GAN training from scratch.

The bi-directions of both spatial diffusion and temporal predictor together form a quadruple diffusion convolutional recurrent

network (Q-DCRN) as shown in Fig. 3. In the framework, we consider the sampling-based inference (i.e., feeding in its

generation per step) in the bi-predictor such that it is bi-directional knowledgeable of its own dynamics, and the teacher
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Fig. 4. Illustration of the diffusion convolutional structure in the update gate of GRU. The operators[; ], 
 , and� denote concatenation, matrix multiplication,
and matrix addition, respectively.wz

u;n wz
d;n are the upstream and downstream convolution kernels for the diffusion stepn. Note that we only have a single

kernelwz
0 whenn = 0 . The functionf denotes activation (� for zt ).

forcing learning (i.e., feeding in the ground truth per step) in the bi-discriminator such that it revises the predictor with real

dynamics.

Here, we elaborate the details of our bi-predictor and bi-discriminator constructions. We formalize the forward predictor (i.e.,

BiS-DCRN) using a diffusion convolutional GRU (denoted asGRU� G ) as the basic recurrent unit. As an alternative to LSTM

[49], GRU [18] has comparable performance with more portable gate mechanisms. Intuitively, we embed the dual directional

diffusion convolution (Eq. (1)) into the GRU cell as a substitute for the matrix multiplication inside each gate. By absorbing

current motion velocityr x t and the previous hidden stateht � 1 as input, a one-step diffusion convolution transition based on

GRU can then be formatted as

ht = GRU � G ([r x t ; ht � 1]; w); (2)

wherew is the convolution kernel set. The diffusion convolution� G is conducted on the update gatezt , the reset gater t ,

and the candidatect of GRU, and we illustrate its detailed operations inzt as an example in Fig. 4. The same operations are

conducted forr t . In ct , the ht � 1 in the structure is replaced by the dot productr t � ht � 1, andf becomestanh. The hidden

stateht = zt � ht � 1 + (1 � zt ) � ct follows the standard GRU architecture.

Next, we encode the pre�x of motion dynamics frame by frame. The encoded hidden state along with the last frame

observation is utilized to activate the decoder. The entire predictor is under a seq2seq backbone. After translating the input

motion velocity into high-dimensional expression underGRU� G , the output will go through a linear projection converted back

to velocity space. The decoder will decode the predictive velocities under a sampling-based mechanism as in [8]. We follow

the same steps for the backward direction by predicting the backward velocity. Our discriminator consists of a forward and a



IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY 11

backward diffusion convolutional GRU layer which is shared from the forward and the backward predictor, respectively. The

bi-discriminator encodes the generated velocity frame by frame in two directions. The �nal forward and backward states are

concatenated by a linear layer (K � P � 2 ! 1) with sigmoidactivation to output the probability as shown in the lower part

of Fig. 3.

C. Velocity-informed Training

Given the quadruple prediction system, we now explain how to train the system with velocity from the observed motion

dynamics to keep continuity at early prediction, and how we optimize the model to ensure a plausible generated sequence in

terms of the intra-frame poses and the inter-frame dynamics with the co-operation of two proposed losses.

To reduce the initial frame jump, we propose a training strategy to uniformly interpret the motion velocity from motion

observation to prediction. The velocity acts as an explicit indicator to measure the body moving trend [50]. Compared with

raw poses, predicting velocity mitigates the loss of temporal dynamics over time, which prevents changeless poses or so-called

“dying out”. With smaller magnitudes of input values, velocities also assist to regularize the network regression with good

generalization ability. However, the general operation to include velocity is to use the residual architecture [8], [13], [16] that

outputs the velocity from its observed pose sequence, which leads to the inconsistent dynamics between the prediction and the

seed moving trend. To avoid this, we directly learn our system from the observed velocity to predict the future velocity, and

this preserves the initial continuity in the generated temporal dynamics.

For the optimization of our framework, we wish the generated motion produces not only a plausible pose at each frame but

also an overall right moving dynamics. This is because a generated motion can be intuitively measured under 1) the consecutive

pose set and 2) the temporal velocity variation, where the second measurement is usually overlooked by existing research [9],

[21], [51].

To this end, we propose a velocity-pose reconstruction loss to penalize the reproduced poses from velocity, together with a

general adversarial loss to regularize the dynamics on velocity space. The whole network will optimize alternatively according

to these two constraints and search the optimal solution for the predicted motion.

1) The Velocity-Pose Reconstruction Loss:We propose a novel velocity-pose reconstruction loss to measure the generated

velocity in pose domain. The “velocity-pose” is de�ned as deriving the current pose based on the velocity over time and the

initial pose. Speci�cally, for each temporal direction, we �rst compute the pose displacement by accumulating the predicted

velocity sequences and then add it to the initial pose to generate the current pose. The “reconstruction loss” denotes the

mean squared error between the ground-truth poses with the generated pose sequence. Since similar velocity chains can derive

completely different pose sequences, it is risky to optimize the predictor on the velocity domain [17] when the network is

blind to the generated poses. Therefore, we rebuild the poses from the predicted velocity frame by frame, and minimize the

loss in the pose level, so that the generated motion is controllable.

Practically, the bi-predictor will output the joint velocities, and we then reduce the cost based on the iteratively derived pose

sequence according to the composed objective function with two independent terms calculating forward and backward losses
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separately:
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(3)

whereL recons denotes the reconstruction loss conducted on the bi-directional pose sequences.

2) The Velocity-based Adversarial Loss:We then show the details of how we form our adversarial loss in the velocity

domain. With the bi-discriminator encoding the velocity trend, the adversarial loss will guide the generated velocities in two

directions to follow the ground truth moving dynamics.

After minimizing the velocity-pose reconstruction loss (i.e.,L recons ), the optimized predictor weights will be reused in the

discriminator (denoted asD) within the same direction to be further updated with respect to the adversarial lossL adv , which

is computed by:

L adv = EX logD([r X t +1: T ; r X T :t +1 ]jwf ; wb; w0)

+ EX̂ log(1 � D ([r X̂ t +1: T ; r X̂ T :t +1 ]jwf ; wb; w0)) ;
(4)

wherew0 represents the kernel parameters for the linear layer,wf and wb are the shared forward and backward parameters

from the bi-predictor respectively, andr X T :t +1 is the reverse of velocity sequencer X t +1: T in time order. The adversarial

training follows the minimax optimization:

min
wf

max
wf ;w0

L adv : (5)

By reusing the learned weightswf from D, the forward predictor can quickly converge to its target distribution. Note that

we do not updatewb in this step since we want to regulate the forward generation as our �nal prediction rather than the

backward generation. The sharing mechanism will not only keep the prediction consistent with the ground truth motion but

also help save computational memory.

IV. EXPERIMENTS

In this section, we validate the proposed Q-DCRN on both short and long-term predictions. The experiments are conducted

on various benchmark datasets commonly used in motion prediction tasks. We then compare the results with the state of the

arts and justify the effectiveness of different components of our model.

A. Datasets

1) Human3.6M:We �rst experiment on Human3.6M [38], which is a large and canonical 3D human pose dataset for motion

analysis. Human3.6M captures 7 actors performing 15 activities with diverse motion dynamics, such as periodic actions with

moving regularities like “walking” and “eating”, and aperiodic action with intensive variations like “posing” and “walking
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dog”. In each frame, there are 32 joints represented by 3D angles in the format of the exponential map. As in [8], global

translation and rotation are discarded together with the joint angles in constant standard deviations. The motion sequence is

downsized to 25 frames per second. We test on subject #5 while training on the others, and set 50 frames as motion seeds

and 25 frames for inference following previous experimental setup [8], [15].

2) CMU MoCap: Following [15], we conduct the second experiment on the CMU Motion Capture dataset (CMU MoCap)

[39]. The CMU MoCap database captures 5 main activities produced by 144 actors, which serves over 2000 recordings. This

dataset is very challenging with complex sports actions such as “soccer” and “basketball”. The skeleton contains 38 joints in

each 3D pose. We employ the same criteria of data cleaning as [15]. Human interactions and motions with multiple topics are

removed as well as the motion categories with less than 6 trials. The �nal set contains 8 motion types. We conduct the same

pre-processing steps as Human3.6M.

3) Penn Action Dataset:We also experiment on the Penn Action dataset [40] to test the robustness of our approach towards

2D pose forecasting. The Penn Action dataset consists of 2326 trials of human action annotated by 13 joints in the 2D pose.

It contains 15 different categories with diverse complexity range as shown in Fig. 5. As in [17], [52], the dataset is split into

1258 samples for training and 1068 for testing. Following [17], we input the initial velocity and predict the next 16 frames of

poses.

B. Baselines and Experimental Settings

1) Baselines:In this work, three action-speci�c models are used for comparison, which are RNN-based models: ERD [30],

LSTM-3LR [30] and SRNN [31]. The action-speci�c model aims to train an individual prediction model for each action.

The more general and more challenging multi-label algorithm aims to train a universe model for all action categories. Our

approach follows the intention of multi-label algorithms. We then compare with the state-of-the-art multi-label algorithms

related to our network architecture under two types of baselines, which are RNN or CNN-based models: RRNN [8], 3D-

PFNet [10], RMA [32], TP-RNN [17], VGRU [10], QuaterNet [36], BiHMP-GAN [16], and ConvSeq2seq [15]; GCN-based

models: LDR [29] and DMGNN [28]. To demonstrate the effectiveness of our velocity modeling method, we also present

the prediction results for modeling velocity consistently (denoted as VRNN) to compare with RRNN which models posture

sequence with residual connections.

2) Evaluation Metrics:We �rst evaluate our method on the standard metric, i.e., the Mean Angle Error (MAE) calculated on

the Euler angle. Besides the common measurement, we also adopt the positional metrics that cover the Mean Per Joint Position

Error (MPJPE) and the Percentage of Correct Keypoint (PCK) to validate the predictive ability of models. Previous literature of

motion prediction heavily relies on measuring the Euler angle distance and sampling the predicted poses qualitatively. However,

merely using the Euler angle as quantitative criteria is unconvincing due to the non-unique solutions for a feasible pose [53].

Hence, we also measure the generated poses using positional metrics as complementary.

Mean Angle Error (MAE) Following the standard evaluation protocol adopted in [8], [15], [16], [32], we �rst use the

mean error of Euler angle as the evaluation metric for a fair comparison among the baselines and the proposed method. The
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(a) Baseball swing

(b) Jump rope

Fig. 5. Example frames of the Penn Action dataset. The upper rows are sampled from RGB action videos and the bottoms are the corresponding extracted
2D joint positions.

prediction error is calculated from the average of Euler angle difference per joint between prediction and reference. Note that

the joint angles are represented by local orientations based on the kinematic chain in the human skeleton.

Mean Per Joint Position Error (MPJPE) As a common problem in Euler angle representation [53], similar poses may

deduce completely different joint angle sets. To avoid such biased veri�cation in the MAE metric, we also evaluate the generated

poses on the protocol of MPJPE as suggested by [38], [52]. The MPJPE is to calculate the deviation of estimated joint points

by converting the relative angles to absolute joint coordinates using forward kinematics.

Percentage of Correct Keypoint (PCK) To be consistent with TP-RNN [17] and 3D-PFNet [52], we also test PCK on

Human3.6M and Penn Action datasets. The intention of PCK is to count the proportion of predicted joints detected within

a radius of prede�ned threshold� (in meters) around the objective joints, which is commonly employed in 2D or 3D pose

estimation [20], [54]–[56].
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TABLE I
EVALUATIONS ON THE STATE-OF-THE-ART RNN OR CNN-BASED APPROACHES AT SHORT-TERM AND LONG-TERM MAE OF HUMAN 3.6M DATASET.
UNDERLINED VALUES REPRESENT THE LOWER ERROR BETWEENRRNN AND VRNN. BOLD VALUES REPRESENT THE LOWEST ERROR AMONG ALL

METHODS.

Walking Eating Smoking Discussion
Time (milliseconds) 80 160 320 400 1000 80 160 320 400 1000 80 160 320 400 1000 80 160 320 400 1000
ERD [30] 0.93 1.18 1.59 1.78 N/A 1.27 1.45 1.66 1.80 N/A 1.66 1.95 2.35 2.42 N/A 2.27 2.47 2.68 2.76 N/A
LSTM-3LR [30] 0.77 1.00 1.29 1.47 N/A 0.89 1.09 1.35 1.46 N/A 1.34 1.65 2.04 2.16 N/A 1.88 2.12 2.25 2.23 N/A
SRNN [31] 0.81 0.94 1.16 1.30 N/A 0.97 1.14 1.35 1.46 N/A 1.45 1.68 1.94 2.08 N/A 1.22 1.49 1.83 1.93 N/A
RRNN [8] 0.28 0.50 0.74 0.81 1.12 0.24 0.42 0.69 0.85 1.44 0.34 0.62 1.03 1.15 2.01 0.33 0.72 1.04 1.11 1.92
VRNN (Ours) 0.26 0.45 0.63 0.70 0.86 0.21 0.34 0.55 0.69 1.21 0.26 0.48 0.89 0.90 1.67 0.30 0.65 0.98 1.07 1.77
ConvSeq2seq [15] 0.28 0.48 0.68 0.771.08 0.21 0.35 0.57 0.72 1.27 0.27 0.49 0.93 0.91 1.68 0.31 0.65 0.91 1.02 2.01
RMA [32] 0.28 0.45 0.62 0.68 0.79 0.21 0.34 0.53 0.68 1.16 0.26 0.50 0.96 0.93 1.71 0.29 0.64 0.90 0.96 1.72
TP-RNN [17] 0.25 0.41 0.58 0.65 0.77 0.20 0.33 0.53 0.67 1.14 0.26 0.47 0.88 0.90 1.66 0.30 0.66 0.96 1.04 1.74
VGRU [10] 0.34 0.47 0.64 0.72 N/A 0.27 0.40 0.64 0.79 N/A 0.36 0.61 0.85 0.92 N/A 0.46 0.82 0.95 1.21 N/A
QuaterNet [36] 0.21 0.34 0.56 0.62 N/A 0.20 0.35 0.58 0.70 N/A 0.25 0.47 0.93 0.90 N/A 0.26 0.60 0.85 0.93 N/A
BiHMP-GAN [16] 0.33 0.52 0.63 0.67 0.85 0.20 0.33 0.54 0.70 1.20 0.26 0.50 0.91 0.86 1.11 0.33 0.65 0.91 0.95 1.77
Q-DCRN (Ours) 0.20 0.36 0.56 0.60 0.69 0.18 0.32 0.56 0.67 1.18 0.22 0.43 0.87 0.84 1.58 0.32 0.69 0.98 1.04 1.56

Directions Greeting Phoning Posing
Time (milliseconds) 80 160 320 400 1000 80 160 320 400 1000 80 160 320 400 1000 80 160 320 400 1000
RRNN [8] 0.43 0.69 0.84 0.94 1.49 0.53 0.88 1.34 1.53 2.11 0.60 1.14 1.56 1.72 1.98 0.40 0.76 1.41 1.68 2.55
VRNN (Ours) 0.37 0.58 0.77 0.86 1.37 0.50 0.84 1.27 1.45 1.77 0.57 1.11 1.48 1.63 1.71 0.44 0.83 1.41 1.65 2.51
ConvSeq2seq [15] 0.39 0.60 0.80 0.911.45 0.51 0.82 1.21 1.38 1.72 0.59 1.13 1.51 1.65 1.81 0.29 0.60 1.12 1.37 2.65
RMA [32] 0.40 0.61 0.77 0.86 1.42 0.52 0.86 1.26 1.43 1.79 0.59 1.11 1.47 1.59 1.73 0.26 0.54 1.14 1.41 2.43
TP-RNN [17] 0.38 0.59 0.75 0.83 1.38 0.51 0.86 1.27 1.44 1.81 0.57 1.08 1.44 1.59 1.68 0.42 0.76 1.29 1.54 2.47
Q-DCRN (Ours) 0.28 0.45 0.62 0.70 1.31 0.38 0.67 1.11 1.32 1.78 0.53 1.00 1.39 1.56 1.60 0.30 0.66 1.28 1.52 2.26

Purchases Sitting Sitting Down Taking Photo
Time (milliseconds) 80 160 320 400 1000 80 160 320 400 1000 80 160 320 400 1000 80 160 320 400 1000
RRNN [8] 0.59 0.83 1.16 1.24 2.35 0.47 0.77 1.25 1.49 2.15 0.54 1.03 1.58 1.81 2.81 0.33 0.64 0.98 1.10 1.54
VRNN (Ours) 0.60 0.83 1.13 1.21 2.32 0.40 0.64 1.04 1.18 1.68 0.43 0.80 1.17 1.32 1.98 0.27 0.54 0.85 0.98 1.36
ConvSeq2seq [15] 0.63 0.91 1.19 1.292.52 0.39 0.61 1.02 1.18 1.67 0.41 0.78 1.16 1.31 2.06 0.23 0.49 0.88 1.06 1.40
RMA [32] 0.59 0.84 1.14 1.19 2.33 0.40 0.64 1.04 1.22 1.71 0.41 0.77 1.14 1.29 2.07 0.27 0.52 0.80 0.92 1.21
TP-RNN [17] 0.59 0.82 1.12 1.18 2.28 0.41 0.66 1.07 1.22 1.74 0.41 0.79 1.13 1.27 1.93 0.26 0.51 0.80 0.95 1.35
Q-DCRN (Ours) 0.46 0.68 1.08 1.13 2.16 0.29 0.51 0.88 1.05 1.63 0.37 0.73 1.03 1.15 1.95 0.18 0.38 0.64 0.78 1.17

Waiting Walking Dog Walking Together Average
Time (milliseconds) 80 160 320 400 1000 80 160 320 400 1000 80 160 320 400 1000 80 160 320 400 1000
RRNN [8] 0.34 0.67 1.15 1.35 2.27 0.53 0.89 1.21 1.35 1.94 0.28 0.56 0.79 0.84 1.36 0.42 0.74 1.12 1.26 1.94
VRNN (Ours) 0.31 0.61 1.11 1.32 2.46 0.54 0.95 1.29 1.45 2.03 0.24 0.51 0.72 0.75 1.29 0.38 0.68 1.02 1.14 1.73
ConvSeq2seq [15] 0.30 0.62 1.09 1.302.50 0.59 1.00 1.32 1.44 1.92 0.27 0.52 0.71 0.74 1.28 0.38 0.68 1.01 1.13 1.77
RMA [32] 0.33 0.65 1.12 1.30 2.28 0.53 0.87 1.16 1.33 2.00 0.28 0.52 0.68 0.71 1.31 0.37 0.66 0.98 1.10 1.71
TP-RNN [17] 0.30 0.60 1.09 1.31 2.46 0.53 0.93 1.24 1.38 1.98 0.23 0.47 0.67 0.71 1.28 0.37 0.66 0.99 1.11 1.71
Q-DCRN (Ours) 0.26 0.56 0.99 1.18 2.33 0.46 0.79 1.10 1.20 1.82 0.20 0.40 0.57 0.62 1.20 0.31 0.57 0.90 1.02 1.60

3) Implementation Details:We express motion velocityr x i as a graph signal ofRK and utilize 64 units (P = 64) in the

GRU cell under graph convolution. The maximum step for spatial diffusionN is set to 3 (see detailed analysis in Section IV-G).

To stabilize the optimization process, we employ a scheduled training strategy to balance the predictor and discriminator. We

optimize two steps of Eq. (3) followed by one step of adversarial training. The proposed model is trained using gradient

descent optimizer with a regressive learning rate of 0.05 on Human3.6M and CMU MoCap, and 0.005 on the Penn Action

dataset. We set the batch size to 16, and perform gradient clipping underl2-norm. The entire network is implemented using

the Tensor�ow backend.

C. Comparisons on the Human3.6M Dataset

We �rst compare with the state-of-the-art RNN or CNN-based methods and report their MAE over future timestamps 80ms,

160ms, 320ms, 400ms (for short-term prediction) and 1000ms (for long-term prediction) on Human3.6M. The prediction

accuracy comparisons are presented in Table I. We signi�cantly outperform ERD, LSTM-3LR, and SRNN on four actions

“walking”, “eating”, “smoking”, and “discussion” that are usually compared in previous works. Generally, VRNN outperforms

RRNN even at the primary prediction (80ms), which shows the advantage of our velocity modeling manner over residual

connections to improve temporal continuity at early prediction. The visualization results on keeping the continuity can be
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(a) Walking (b) Eating

(c) Smoking (d) Discussion

Fig. 6. Qualitative comparisons with the state-of-the-art RNN or CNN-based approaches on the Human3.6M dataset. For each action, the top sequence refers
to the ground truth. The second, third and bottom sequences correspond to RRNN, ConvSeq2seq, and our Q-DCRN, respectively. The initial four poses are
the seed frames, followed by one second of prediction.

(a)

(b)

Fig. 7. Evaluations on the two positional metrics of Human3.6M with (a) MPJPE# curves along the prediction timeline and (b) PCK" curves at 1000ms
under different thresholds� . # the lower the better," the higher the better.

found in our supplementary video. In Table I, Q-DCRN outperforms the baseline methods on both short and long-term

prediction, and the error accumulates slower compared with the other methods along the sampled timestamps.

We also qualitatively verify RRNN, ConvSeq2seq, and our Q-DCRN prediction results towards commonly examined ac-

tions on Human3.6M with two high-dynamic actions “walking” and “eating”, and two low-dynamic actions “smoking” and

“discussion” (see Fig. 6). We observe that Q-DCRN better simulates the ground truth motion trends compared to the other

two methods. For the high-dynamic “walking” action in Fig. 6(a), all three methods show reliable movements as the periodic

pattern is easy to capture. We further observe that Q-DCRN gives a precise prediction of double arms staying behind the legs

while its competitors fail to do so, which shows the effectiveness of globally modeling joint dependencies along the spatial

graph. For the action “eating” in Fig. 6(b), there is an interesting investigation that both RRNN and ConvSeq2seq move the
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